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Abstract

A numerical formulation for Eulerian–Lagrangian simulations of particle-laden flows in complex geometries is developed. The for-
mulation accounts for the finite-size of the dispersed phase. Similar to the commonly used point-particle formulation, the dispersed par-
ticles are treated as point-sources, and the forces acting on the particles are modeled through drag and lift correlations. In addition to the
inter-phase momentum exchange, the presence of particles affects the fluid phase continuity and momentum equations through the dis-
placed fluid volume. Three flow configurations are considered in order to study the effect of finite particle size on the overall flowfield: (a)
gravitational settling, (b) fluidization by a gaseous jet, and (c) fluidization by lift in a channel. The finite-size formulation is compared to
point-particle representations, which do not account for the effect of finite-size. It is shown that the fluid displaced by the particles plays
an important role in predicting the correct behavior of particle motion. The results suggest that the standard point-particle approach
should be modified to account for finite particle size, in simulations of particle-laden flows.
Published by Elsevier Ltd.
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1. Introduction

Many engineering problems involve two-phase flows,
where particles of different shapes, sizes, and densities in
the form of droplets, solid particles, or bubbles are dis-
persed in a continuum (gaseous or liquid) fluid. Numerical
simulations of these flows commonly employ Lagrangian
description for the dispersed phase and Eulerian formula-
tion for the carrier phase. Depending on the volumetric
loading of the dispersed phase two regimes can be identi-
fied: dilute (dp� l) and dense (dp � l), where dp is the par-
ticle diameter, and l the inter-particle distance (Elghobashi,
1984). Furthermore, the grid resolution (D) used for solu-
tion of the carrier phase could be such that the particles
are subgrid (dp� D), partially resolved (D � dp), or fully
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resolved (D� dp). Different numerical approaches are nec-
essary to simulate the various regimes of the flow. Typical
applications (e.g. spray combustion, liquid atomization,
fluidized bed combustion, aerosol transport, and bubbly
flows) involve millions of dispersed particles in a turbulent
flow where the particle diameter could be smaller than, or
comparable to the Kolmogorov length scale. To simulate
these flows using fully resolved direct numerical simulation
(where the forces acting on a particle are computed and not
modeled) requires enormous computational resources, and
the use of such methods are commonly restricted to small
number of particles (�1000, Kajishima and Takiguchi,
2002; Choi and Joesph, 2001).

To facilitate simulations of large number of dispersed
particles in complex turbulent flows the ‘point-particle’
(PP) assumption is commonly invoked. The particle size
is assumed to be smaller than the grid size and the forces
exerted by the particles onto the fluid are represented
as point-sources at the position of the centroid of the
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particle. Typically, direct numerical simulation (DNS),
large-eddy simulation (LES) or Reynolds-averaged Navier
Stokes (RANS) equations are used for the carrier phase,
whereas the motion of the dispersed phase is modeled
through drag and lift laws (Crowe et al., 1998). Several
simulations of particle-laden flows have been performed
with the carrier fluid simulated using DNS (Reade and
Collins, 2000; Rouson and Eaton, 2001; Xu et al., 2002),
LES (Wang and Squires, 1996; Apte et al., 2003a,b; Segu-
ra et al., 2004; Moin and Apte, 2006), and RANS (Som-
merfeld et al., 1992), where the dispersed phase is
assumed to be subgrid (so dp < LK, the Kolmogorov
length scale, for DNS, whereas dp < D, the grid size, in
LES or RANS).

Recently, Apte et al. (2003a, 2004) used LES for the
carrier phase along with point-particle assumption for
swirling, separated flows in coaxial combustors and
obtained good agreement with the available experimental
data. The particle dispersion characteristics and residence
times were accurately predicted using an unstructured grid
LES solver (Mahesh et al., 2004). However, modeling the
dispersed phase using the point-particle approach does
not always yield accurate results. For moderate loadings
and wall-bounded flows, Segura et al. (2004) have shown
that the point-particle approximation fails to predict tur-
bulence modulation in agreement with experimental val-
ues. In order to capture the same level of turbulence
modulation observed in experiments, it was required to
artificially increase the particle loadings by an order of
magnitude when using the point-particle approach. In
addition, if the particle size is comparable to the Kolmogo-
rov scale (for DNS) or the grid size (for LES/RANS), sim-
ple drag/lift laws typically employed in point-particle
approach do not capture the important features of
unsteady wake effects commonly observed in full resolved
DNS studies (Burton and Eaton, 2003; Bagchi and Bala-
chandar, 2003). These effects become even more pro-
nounced in dense particulate regions. Also, the effect of
wake behind a particle and its rotation become important
when the particle diameters are large. In addition, in many
practical applications, the local particle size and concentra-
tions may vary substantially. For example, in liquid fuel
atomization process in propulsion systems, the droplet
sizes may range from 1 mm to 1 lm with dense regions
near the injector nozzle. The point-particle assumption is
invalid under these conditions, but still is widely used in
simulations of multiphase flows (Apte et al., 2003b, 2004;
Moin and Apte, 2006). The particle volume fractions are
often neglected in these simulations owing to the increased
complexity of the governing equations as well as numerical
stiffness they impose in the dense particle regions. The
wake effects and particle rotation are also neglected in
these simulations. In the present paper, emphasis is placed
on improving the point-particle assumption by accounting
for their finite-size. Further modifications to account for
wake effects and particle rotation are possible; but are
deferred to future work.
We attempt to extend the point-particle approximation
by accounting for the volumetric effects of the particles
and the corresponding volume displacement in the carrier
phase. Only isothermal, incompressible flows are consid-
ered; however, the methodology can be readily extended
to variable density and reacting flows. In this finite-size
particle approach (FSP), the particles are still assumed to
be subgrid, and the forces acting on them are modeled
using modified drag and lift laws. The finite-size of the par-
ticle is accounted by modifying the carrier phase continuity
and momentum equations to include the fluid volume frac-
tion (Hf). The effect of the particles onto the carrier fluid is
felt through a source term in the momentum equations sim-
ilar to the two-way coupling of point-particles. In addition,
the fluid volume displaced by the particles also affect the
continuity and momentum equations. Here we attempt to
show that these effects of volumetric displacement of the
carrier fluid can capture some of the important effects
observed in fully resolved DNS studies of particle-laden
flows. The effects are pronounced in regions where particles
are clustered together.

The formulation was originally put forth by Dukowicz
(1980) in the context of spray simulations and later modified
by Joseph and Lundgren (1990) based on mixture theory.
Andrews and O’Rourke (1996) developed a multiphase par-
ticle-in-cell (PIC) algorithm on structured grids based on
the Eulerian–Lagrangian formulation for dense particulate
flows. A similar formulation has recently been applied to
bubbly flows at low bubble concentrations (up to 0.02) to
investigate the effect of bubbles on drag reduction in turbu-
lent flows (Xu et al., 2002; Ferrante and Elghobashi, 2004).
Several studies on laminar dense granular flows (Patankar
and Joseph, 2001a; Snider, 2001) also use this approach.
However, none of these studies identify the effects of the
fluid displacement by the dispersed phase as compared to
the standard point-particles. In this work, the numerical
framework for multiphase flows developed in Apte et al.
(2003a,b, 2004) is extended to account for the dispersed
phase volume fraction, and inter-particle collisions. The
finite-size and point-particle approaches are compared,
and the effect of fluid volume displacement by the dispersed
phase is elucidated through numerical examples. We inves-
tigate three model problems for dense rigid particulate
flows: (a) gravitational settling, (b) fluidization by a gaseous
jet, and (c) fluidization by lift in a channel flow. The first
two problems also serve as validation cases for the finite-
size approach where comparisons with prior analytical
and numerical studies are made. The particle-laden channel
flow illustrates that the finite-size effects become important
in the near-wall regions and should be accounted for in
Eulerian–Lagrangian simulations.

The paper is organized as follows. Section (2) describes
mathematical formulation of the governing equations. The
numerical method is then outlined in Section (3), where
gravitational settling (4.1), gas–solid fluidization (4.2),
and fluidization by lift (4.3) are considered. A brief sum-
mary in Section (5) concludes the paper.
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2. Mathematical formulation

The formulation consists of the Eulerian fluid and
Lagrangian particle equations, and accounts for the dis-
placement of the fluid by the particles, as well as the
momentum exchange between the two phases (Joseph
and Lundgren, 1990).

2.1. Gas-phase equations

The fluid mass per unit volume satisfies the continuity
equation

o

ot
ðqf Hf Þ þ 5 � ðqf Hf uf Þ ¼ 0; ð1Þ

where qf, Hf, and uf are fluid density, volume fraction, and
velocity, respectively. The divergence operator in the conti-
nuity equation can be expanded to show that

5 � uf ¼ �
1

Hf

oHf

ot
þ uf � 5Hf

� �
; ð2Þ

i.e., the average velocity field of the fluid phase does not
satisfy a ‘divergence-free’ condition even if we consider
an incompressible suspending fluid. The particle volume
fraction, Hp = 1 � Hf is defined as

HpðxcvÞ ¼
XNp

p¼1

V pGrðxcv; xpÞ; ð3Þ

where the summation is over all particles Np that will influ-
ence the computation cell (cv), with volume (Vcv) and cen-
troid at xcv. Here xp is the particle location, and Vp the
volume of a particle. Particles will be assumed spherical,
however, non-spherical particles can also be modeled by
using an effective diameter and modified drag laws (Crowe
et al., 1998). The interpolation function, Gr, effectively
transfers a Lagrangian quantity to give an Eulerian field
(per unit volume, Vcv, of the grid cell containing the particle
centroid) on the underlying grid and is defined later. The
fluid momentum equation is (Joseph and Lundgren, 1990)

o

ot
ðqf Hf uf Þ þ 5 � ðqf Hf uf uf Þ

¼ �5 ðHf pÞ þ 5 � ðlf DcÞ þ F; ð4Þ

where p is the dynamic pressure, lf is the viscosity of the
fluid, and Dc ¼ 5uc þ5uT

c is the average deformation-rate
of the fluid–particle composite, uc = Hfuf + Hpus is the
composite velocity of the mixture, and F is the force per
unit volume that the particles exert on carrier fluid. These
equations are derived in detail for constant density flows
in Joseph and Lundgren (1990). Here, us is the average par-
ticle velocity given as

Hpus ¼
XNp

p¼1

V pGrðxcv; xpÞup; ð5Þ

where up is the particle velocity.
2.2. Particle-phase equations

The positions and velocities of individual particles are
obtained by solving the following ordinary differential
equations for each particle p:

d

dt
ðxpÞ ¼ up; ð6Þ

mp
d

dt
ðupÞ ¼ Fp; ð7Þ

where xp is the particle position, up is the particle velocity,
mp the particle mass, Fp = mpAp is the total force acting on
the particle, and Ap is the particle acceleration given in Eq.
(8).

The forces on a particle may consist of the standard
hydrodynamic drag force, dynamic pressure gradient, gra-
dient of viscous stress in the fluid phase, history force,
inter-particle collision, and buoyancy force and are well
described by the Basset–Boussinesq–Oseen (BBO) equa-
tions (Crowe et al., 1998). In the present work, we assume
that the particle forces consist of drag, collision and grav-
itational acceleration only, and neglect all other terms.
For high density ratios (qp/qf � 1000), these assumptions
are generally considered valid (Apte et al., 2003a). We
emphasize the effect of variations in particle volume frac-
tion on the overall flowfield and particle motion.

The particle acceleration Ap is defined as

Ap ¼ Dpðuf ;p � upÞ þ 1�
qf

qp

 !
gþ Acp; ð8Þ

where Acp is the acceleration due to inter-particle forces,
and uf,p is the fluid velocity at the particle location. The in-
ter-particle force is modeled by the discrete-element meth-
od of Cundall and Strack (1979). The inter-particle
repulsive force F P–P

pj on parcel p due to collision with parcel
j is given by

F P–P
pj ¼

0 for dpj P ðRp;pþRp;jþaÞ;

kcd
3=2
pj �gcðup�ujÞ �npj

� �
npj for dpj < ðRp;pþRp;jþaÞ;

8<:
ð9Þ

dpj¼ðRp;pþRp;jþaÞ�dpj; ð10Þ

FP–P
jp ¼�FP–P

pj ; ð11Þ

where dpj is the distance between the center of the pth and
jth parcels, npj is the unit vector from the center of parcel j

to that of parcel p, a is the force range, kc the stiffness
parameter, and gc the damping parameter, and
Rp = (3Vp/4p)1/3 is the radius of each particle in a given
parcel. Patankar and Joseph (2001b) used the following
expressions to compute the damping parameter:

gc ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mpkc

1þ a2

r
;

a ¼ � lnðe=pÞ;
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where e is the coefficient of restitution and mp = NpqpVp is
the parcel mass. Similarly, the parcel-wall force ðFP–W

pw Þ on
parcel p due to collision with wall w is

FP–W
pw ¼

0 for dpw P ðRp;p þ aÞ;

kcd
3=2
pw � gcðupÞ � npw

� �
npw for dpw < ðRp;p þ aÞ;

(
ð12Þ

dpw ¼ ðRp;p þ 2aÞ � dpw; ð13Þ

where dpw is the distance between the center of the parcel p

and the wall w, and npw is the unit vector from the wall to
the center of the parcel. The total collision force is obtained
by looping over all particles and walls. The corresponding
particle acceleration is obtained by dividing the collision
force by the parcel mass.

The drag force is caused by the motion of a particle
through the gas. Dp is defined as

Dp ¼
3

8
Cd

qf

qp

juf ;p � upj
Rp

: ð14Þ

It should be noted that the above formulation for drag
forces and the inter-particle collisions are similar that used
in point-particle approaches, however, may not be ade-
quate for finite-size particles. Models for other forces such
as lift force, history force as well as modifications to the
collision and drag forces may become necessary. However,
the focus of the current paper is to show that, even without
improved models for the above forces, the finite-size
approach can capture some of the basic flow features in
particle-laden flows which cannot be captured by the
point-particle approach. Here, Cd is the drag coefficient
and is given by (Gidaspow, 1994)

Cd ¼
24

Rep
ð1þ aReb

pÞH�2:65
f ; for Rep < 1000 ð15Þ

¼ 0:44H�1:8
f ; for Rep P 1000; ð16Þ

where Rp = (3Vp/4p)1/3 is the particle radius, Rep =
2qfHfjuf,p � upjRp/lf is the particle Reynolds number,
a = 0.5 and b = 0.687. There is an indirect collective effect
in this drag term; when there is a dense collection of parti-
cles passing through the fluid, the inter-phase momentum
exchange term in Eq. (4) will cause uf to approach the par-
ticle velocity, up, thus decreasing the drag on a particle, a
drafting effect. The inter-phase momentum transfer func-
tion per unit volume in Eq. (4) is given as

FðxcvÞ ¼
XNp

p¼1

GrmpDpðuf ;p � upÞ: ð17Þ
3. Numerical method

In this work, the numerical scheme for unstructured,
arbitrary shaped elements developed by Mahesh et al.
(2004) is modified to account for the fluid volume fraction.
The changes in local fluid volume fractions requires solu-
tion of a variable density flowfield as opposed to the con-
stant density, incompressible flows studied in Apte et al.
(2003a,b) and Mahesh et al. (2004). The other important
feature of this work is use of a Gaussian interpolation
operator from the Lagrangian points to the Eulerian grid.
Prior studies on dense granular flows by Patankar and
Joseph (2001a) and Snider (2001) used bilinear interpola-
tion functions to interpolate Lagrangian fields onto the
Eulerian grid nodes. The interpolation stencil utilized 26
neighboring grid cells in three-dimensions. We generalize
these interpolations to unstructured, arbitrarily shaped ele-
ments, using a Gaussian function centered at the particle
centroid for interpolation. This function is given by

Grðx; xpÞ ¼
1

r
ffiffiffiffiffiffi
2p
p� �3

exp �
P3

k¼1ðxk � xp;kÞ2

2r2

" #
: ð18Þ

Here we assume that Vp < Vcv, and use uniform grid cells in
all computations, with r ¼ V 1=3

cv . Accordingly, r remains
the same throughout the computations. The interpolation
operator is applied to all the neighbors of this cv (having
at least one grid node in common). Similar interpolation
has been used in the context of fully resolved simulations
of particles (Maxey and Patel, 2001a). Further investiga-
tion of the choice and effect of r on non-uniform meshes
is necessary and is beyond the scope of this paper.

The advantage of using a Gaussian-based interpolation
kernel is that it can be readily used to transfer particle
quantities to an Eulerian field on arbitrary shaped unstruc-
tured grids. Consistent interpolations preserving higher-
order moments can be derived based on Gaussian-kernels
and are useful for conservative properties of particle-in-cell
methods (Eldredge et al., 2002). Although Gaussian ker-
nels provide smooth interpolations they do not have a com-
pact support. This interpolation scheme has been proven
very effective in large-eddy simulations of point-particle

laden turbulent flows in coaxial combustors on unstruc-
tured grids (Apte et al., 2003a). In addition, G is normal-
ized to satisfyZ

V cv

Grðxcv; xpÞdV ¼ 1; ð19Þ

where the integration is performed over the cv containing
the particle and all of its neighbors. The final step is neces-
sary to enforce mass (or volume) conservation. The result-
ing Hp will be smooth and mass-conserving as the particles
move from one computational cell to another. The steps in
solving the coupled fluid–particle equations are given be-
low. We use a semi-implicit scheme for the fluid solver,
however, the inter-phase momentum exchange terms are
treated explicitly.

• Step 1: Advance the particle positions and velocities
using a third-order Runge–Kutta scheme. We compute
the collision force at each Runge–Kutta iteration. Com-



Table 1
Parameter description for gravity-dominated sedimentation

Computational domain 0.2 · 0.6 · 0.0275 m
Grid 10 · 30 · 5
Fluid density 1.254 kg/m3

Particle density 2500 kg/m3

Number of parcels 1000
Particles per parcel 3375
Diameter of particles 500 lm
Initial particle concentration 0.2
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pute the volume fraction field at the new particle loca-
tions and set the density q = qfHf.

• Step 2: Advance the fluid momentum equations (from tn

to tn+1) using the fractional step algorithm, with the
inter-phase force, F, treated explicitly. As in all fractional
step schemes, this advancement is done in two steps.
First an intermediate velocity field u�i is obtained at the
control volume centers. This velocity field may not sat-
isfy the continuity equation and hence is an approxima-
tion to the actual velocity field at time level tn+1

qnþ1ûi � qnun
i

Dt
þ 1

2Vcv

X
faces of cv

un
i;f þ ûi;f

h i
gnþ1=2

N Af

¼ 1

2Vcv

X
faces of cv

lf
oûi;f

oxj
þ

oun
i;f

oxj

� �
Af þ F n

i ; ð20Þ

where f represents the face values, N the face-normal
component, gN = quN, and Af is the face area. The veloc-
ity components at the faces (ui,f) are obtained by taking
the arithmetic average of velocities at two adjacent con-
trol volumes having a common face.

• Step 3: Interpolate the velocity fields to the faces of the
control volumes and consider the corrector step:

qnþ1unþ1
i � qnþ1ûi

Dt
¼ � dp

dxi
; ð21Þ

qnþ1
f unþ1

N � qnþ1
f ûN

Dt
¼ � dp

dxN
; ð22Þ

where ûN ¼ ûi;f ni;f is the approximation for face-normal
velocity and ni,f are the components of the face-normal.
The face-based density qf is obtained by arithmetic aver-
age of the adjacent control volume-based densities. The
face-normal pressure gradient dp

dxN
and the gradient in

pressure at the cv-centroids are related by the area-
weighted least-squares interpolation developed by Ma-
hesh et al. (2004).

• Step 4: The Poisson equation for pressure is obtained by
taking the divergence of the face-normal velocity com-
ponent in Step 3 to obtain

1

V cv

X
faces of cv

dp
dxN

Af Dt ¼ 1

V cv

X
faces of cv

qnþ1
f bui;f Af þ

dq
dt
:

ð23Þ
Here we have made use of the continuity equation

dq
dt
¼ � 1

V cv

X
faces of cv

qnþ1
f unþ1

i;f Af : ð24Þ

• Step 5: Reconstruct the pressure gradient, compute new
face-based velocities, and update the cv-velocities using
the least-squares interpolation used by Mahesh et al.
(2004).

Note that, in the above formulation if we set Hf = 1 in
all computational cells, we obtain q = qf, and oq

ot ¼ 0. This
results in the standard incompressible flow equations used
for the point-particle approach.
4. Results

In order to reduce the number of particles tracked in the
following simulations, the concept of ‘parcels’ is used. A
parcel consists of a collection of particles having same
properties, e.g. the diameter. The parcel is identified by
the number of particles it consists, the diameter of each
particle, the position and velocity of the centroid of the
particles. The parcel approach has been used in spray sim-
ulations (Apte et al., 2003b; Moin and Apte, 2006). Note
that the present formulation can be applied directly to
track each particle, however, would require increased com-
putational time.
4.1. Gravitational settling

We first simulate sedimentation of solid particles under
gravity in a rectangular box. Details of the simulation are
given in Table 1. Initial parcel positions are generated ran-
domly over the entire length of the box. These parcels are
then allowed to settle through the gas-medium under grav-
ity. The dominant forces on the particles include gravity
and inter-particle/particle–wall collision. As the particles
hit the bottom wall of the box, they bounce back and stop
the incoming layer of particles, and finally settle to a close-
pack limit (Hp � 0.6). Fig. 1a shows the time evolution of
particle positions in the rectangular box starting with an
initial random distribution for finite-size particles. The par-
ticles eventually settle down with close-packing near the
bottom wall. As the particles settle, they accelerate the fluid
flow upwards, which in turn slows the rate of particle
settling.

The simulation was also performed using the point-par-
ticle approach by neglecting the particle volume fraction
(by setting Hf = 1). The collision between the particles
and with the wall are simulated using the same collision
model. Note that the point-particle formulation does not

include any displacement of the carrier fluid due to particle
motion. Fig. 1b shows the temporal evolution of the inter-
face location between the particles and the surrounding
fluid obtained using finite-size point-particle formulations.
Both approaches predict similar interface evolution which
is well approximated by the analytical estimate h = gt2/2.
This is because the dominant forces acting on the particles
are gravity and inter-particle collision. In the finite-size
approach, as the particles settle, they accelerate the fluid,



Fig. 1. Gravity-dominated sedimentation: (a) temporal evolution of particle distribution, and (b) comparison of height from the bottom wall using point
and finite-size particles to the analytical solution (H = H0 � 0.5gt2).
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however, the effect of the drag force and also the fluid dis-
placed by the particle motion is found negligible. Small dif-
ferences in the interface evolution are observed between the
finite-size and point-particle formulations at later stages
when the variations in local fluid volume displacements
become comparable to the gravity and collision forces.
4.2. Gas–solid fluidization

We consider the problem of fluidization of solid parti-
cles arranged in an array at the bottom of a rectangular
box. Fluidization is achieved by a jet of gas issuing from
the bottom of the box. The flow parameters are outlined
in Table 2. Here, the particle motion is mostly dominated
by the hydrodynamic drag force and the collision model
is important close to the wall, and near the close-pack limit.

Fig. 2a shows the position of parcels at different times
during bubbling fluidization obtained using the finite-size
formulation. Parcel diameters are drawn to scale. The jet
issues from the bottom wall, pushes the particles away
from the central region, and creates a gas-bubble in the
center. The particles collide with each other and the wall,
and are pushed back towards the central jet along the bot-
tom wall. They are then entrained by the jet and levitated.
This eventually divides the central bubble into two. At
future times (not shown), the particles tend to move
upward and collide with the upper wall and remain levi-
Table 2
Parameter description for the simulation of fluidization by a gas jet

Computational domain 0.2 · 0.6 · 0.0275 m
Grid 10 · 30 · 5
Gas jet velocity 9 m/s
Jet diameter 0.04 m
Fluid density 1.254 kg/m3

Particle density 2500 kg/m3

Number of parcels 2880
Particles per parcel 3375
Diameter of particle 500 lm
Initial particle concentration 0.4
tated. The computational results are in good agreement
with the simulations of Patankar and Joseph (2001a). Sim-
ilar results have been reported using Eulerian–Eulerian
approach in two-dimensions by Ding and Gidaspow
(1990) and Gidaspow (1994).

Fig. 2b shows the corresponding temporal evolution of
particles predicted by the point-particle approach using
the same collision model as above. With point-particles,
the only interaction between the two phases is through
the momentum transfer terms. Fig. 2b clearly demonstrates
that this term alone does not represent the inter-phase
interactions properly. With the finite-size formulation, the
particles affect the fluid flow in two ways: (i) the inter-phase
interaction force and (ii) the displacement of fluid through
particle motions. Note that the volumetric displacements
are modeled through the fluid volume fraction (Hf) which
modifies the momentum and continuity equations. In addi-
tion, it also alters the drag law through Eq. (15).

In order to investigate the effect of the drag law, we
repeated the simulation using the finite-size formulation,
however, by setting (Hf = 1) only in Eq. (15). This corre-
sponds to using the same drag law as for point-particle
approach. The effect on the overall particle distribution
was negligible.

The differences in particle evolutions predicted by point-
particle and finite-size approaches thus can be attributed to
the direct effect of variations in particle volume fraction
fractions. Fig. 3a and b shows the corresponding evolution
of the velocity vectors in the symmetry section obtained
from finite-size and point-particle formulations, respec-
tively. Every other point is plotted for clarity of the vector
plot. The differences in flow patterns near the bottom wall
are clearly visible. With the point-particle approach, a
recirculation zone is observed around the jet location.
The flowfield is typical of a jet entering a sudden expansion.
The velocity of the jet is modulated because of the drag
force exerted by the presence of particles. This recirculation
region is absent when using the finite-size formulation. The
entire flowfield near the bottom wall indicates diverging
trajectories away from the jet. This flowfield thus pushes



Fig. 2. Temporal evolution of particle distribution during fluidization by a gas jet from the bottom wall: (a) finite-size particles; (b) point-particles.

Fig. 3. Temporal evolution of the gas-phase velocity vectors in fluidization by jet: (a) finite-size particles; (b) point-particles.
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the particles toward the walls creating a void near the jet
origin (see Fig. 2a). The particles are clustered together into
close-pack near the side walls and slow down the fluid flow.
The gravitational force then moves the particles toward the
jet center at later times (t = 0.011 s). The fluid then shows
the presence of small recirculation zone around the jet
(Fig. 3a, t = 0.011 s). On the contrary, the corresponding
velocity field for the point-particle approach shows upward
propagation of the jet, and recirculation zones.

Fig. 4a and b shows the normalized axial pressure gradi-
ent and kinetic energy along the axis of the jet at different
times. The pressure gradient and kinetic energy distribution
obtained from the finite-size and point-particle approaches
are drastically different. The finite-size approach shows
large variations in the axial pressure gradient. As the jet
enters the rectangular chamber, it encounters a mass of
densely packed particles initially at rest. The inertia of
the particles decelerates the jet, and creates an axial pres-
sure gradient similar to flow over a bluff body. In the pres-
ent case, the particles are pushed away by the jet, which in
turn decreases the kinetic energy along the jet centerline.
The formation and growth of a gas-bubble trapped by
the particles pushes the bed upward. With the point-parti-
cle formulation, the kinetic energy of the fluid close to the
jet opening remains mostly constant, and then decreases
further away from the bottom wall. This shows that the
representation of the inter-phase momentum exchange as
point-sources cannot correctly capture the blocking effects
created by particle clusters.
Fig. 4. Temporal evolution of depth-averaged (a) normalized axial
pressure gradient (centerline ðop

oxÞ=qjetU
2
jet) and (b) normalized kinetic

energy along the centerline of the jet (centerline KE
KEjet

) – solid line: finite-size
particles, dashed line: point-particles.
In order to evaluate the effect of number of parcels on
the temporal evolution of the parcels, and the gas-bubble
patterns seen in Fig. 2a, we repeated the calculation using
fewer parcels. Fig. 5 shows compares results obtained,
using 2880 and 720 parcels. With reduced number of par-
cels, we keep the number of particles associated with each
parcel the same, to maintain the same mass-loading of the
particulate phase. The central bubble pattern is visible,
even with small number of parcels. This verifies that the
inter-parcel collision model as well as the variation of the
particle volume fraction Hp is well captured by our Gauss-
ian kernel-based interpolation scheme.
4.3. Fluidization by lift of spherical particles

The transport of particles by fluids in coal–water slur-
ries, hydraulically fractured rocks in oil-bearing reservoirs,
bed-load transport in rivers and canals and their overall
effect on the river bed erosion, are important scientific
and industrial issues in particulate flows. In order to under-
stand fluidization/sedimentation in such conduits, Choi
Fig. 5. Effect of number of parcels on the time evolution during
fluidization by a gas jet from the bottom wall: (a,c) 2880, (b,d) 720
parcels.
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and Joesph (2001) performed a fully resolved two-dimen-
sional DNS study of flow over circular cylinders (300 par-
ticles) arranged at the bottom of a channel in plane
Poisuille flow. The forces on particles were computed
numerically and not modeled. They observed that with suf-
ficient pressure gradient across the channel, the particles
initially at rest in the lower half of the channel start moving
and roll over the wall. The particle rotation in a shear flow
generates lift and the channel is fluidized after some time.

The parameters used for this simulation are given in
Table 3. As opposed to (Choi and Joesph, 2001), our sim-
Table 3
Parameter description for the simulation of fluidization of spherical
particles in a Poisuille flow

Computational domain 63 · 12 · 12 cm
Grid 20 · 11 · 10
Fluid density 1 g/cm3

Fluid viscosity 1 P
Particle density 10 g/cm3

Diameter of particles 0.9 cm
Number of particles 3780
Array height (from bottom wall) 4.75 cm
Initial centerline velocity 360 cm/s
Pressure gradient 20 dyne/cm3

Fig. 6. Temporal evolution of particle distribution during fluidization by lift in
gas-phase axial velocity.
ulations are three-dimensional with circular spheres
arranged at the bottom of the channel, and the particle
densities are 10 times higher (qp/qf � 10). These higher den-
sities were chosen to ensure significant effects of the inter-
phase momentum exchange. Fig. 6 shows the temporal
evolution of particle positions and contours of volume
fraction field on the left, and fluid axial velocity on the
right. The two-way coupling between the particle and fluid
momentum equations, decelerates the fluid in the bottom
half of the channel, and the particles accelerate from rest.
The particles in the upper layers move faster than those
close to the wall. As the particles move from one grid cell
to another, they push fluid out due to the gradients in vol-
ume fraction in the continuity equation. The volume dis-
placement due to particles sets up instability waves, as
seen from the axial velocity and volume fraction contours
imparting vertical velocity to the particles. The simulation
of this case with point-particle approach does not produce
any lift of the particles, and the particles continue to move
in laminar layers.

In order to further understand the effect of the finite-size
approach, we plot the mean axial velocity variations in the
vertical direction at t = 0 and t = 0.2 s in Fig. 7a. The mean
velocity is obtained by averaging in the axial and spanwise
(homogeneous) directions. Also plotted are the corre-
a plane Poisuille flow: (a)–(d) contours of particle volume fraction, (e)–(h)



Fig. 7. Vertical variation of mean gas-phase axial velocity and particle volume fractions at different times. The time evolutions are obtained using the
finite-size approach. (a) Gas-phase mean axial velocity; (b) particle mean volume fraction.
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sponding mean velocities from the point-particle formula-
tion. Both approaches start with parabolic profiles for
the fluid velocity. As the particles accelerate from rest,
the inter-phase drag force decelerates the fluid flow in the
bottom half of the channel as shown by the decreased fluid
velocity. This is solely due to the inertia of the particles,
and both models predict similar mean velocity profiles at
late times. Small deviations in mean axial velocity in the
particle region exist between the two formulations.
Fig. 7b shows the time evolution of the mean particle vol-
ume fraction predicted by the finite-size particles. Initially,
the volume fraction is constant in the bottom half of the
channel, since the particles are at rest. As the particles
accelerate, the near-wall volume fraction decreases, and
the volume fraction in the center of the channel increases.
In other words, the closely packed particles near the wall
push the array of particles upward.
Fig. 8. Vertical variation of rms velocity at different times using the finite-si
Fig. 8 shows the vertical variation of the rms axial and
vertical velocities at different times in the simulation. With
increasing time, the rms fluctuations in the axial and verti-
cal velocities increase. The locations of high fluctuations
correspond to large gradients in the volume fraction (see
Fig. 7b). It should be noted that the rms velocity fluctua-
tions obtained using the point-particle approach were neg-
ligible, and did not change with time.

As mentioned earlier, the finite-size formulation can
alter the flow evolution through the inter-phase momentum
exchange and the modification of the continuity and
momentum equations. The velocity field is no longer diver-
gence-free in the region of variations in particle volume
fractions: 1

Hf

DHf

Dt ¼ �5 �ðuf Þ. This has a direct effect on
the Poisson equation (23), altering the pressure field
through a local source term. On the other hand, the
commonly used point-particle implementation neglects
ze approach: (a) rms of axial velocity, u 0; (b) rms of vertical velocity, v 0.
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any variations in volume fraction by setting
DHf

Dt ¼ 0.
The point-particle assumption does not necessarily imply
DHf

Dt ¼ 0, however, it is implicitly assumed in most large-
eddy and direct numerical simulations of particle-laden
flows. In order to numerically evaluate the effect of the con-
tinuity equation in the finite-size approach, we artificially
imposed divergence-free constraint (by setting dq/dt = 0)
in the Poisson equation. The results obtained were very
similar to the point-particle approach, and did not produce
any lift of the particles.

These results indicate that the blocking effect of particles
on the fluid phase, modeled by the continuity equation in
the finite-size approach alters the fluid flow in regions of
high gradients in volume fraction. Several tests with higher
grid resolution, varied density ratios were performed to
obtain similar results. It should be noted that, the mecha-
nism of lift observed in the fully resolved DNS simulations
(Choi and Joesph, 2001) is different from the one given by
finite-size model. In the model, we do not consider rotation
of the particles, whereas the DNS includes particle rotation
altering the flowfield immediately surrounding the particle.
The effect of particle rotation and the corresponding lift
produced can be modeled in the finite-size approach by
solving for the angular velocity of the particles and model-
ing the torque exerted on them through correlations similar
to the drag laws. This may change the velocity and the evo-
lution of particles which will alter the volume fraction
fields. However, it is shown that even without these rota-
tional effects, the finite-size formulation predicts the parti-
cle evolution in qualitative agreement with the fully
resolved DNS (Choi and Joesph, 2001).

5. Summary and conclusions

In the present work, we compared the point-particle and
finite-size formulations for three different rigid particulate
flows. Our objective is to investigate the effect of particle
volume fractions on the flow development. For the first
case of gravitational settling, the particle evolution
obtained from point-particles and the finite-size model
are similar. This is mainly because, the flow is gravity-
and collision-dominated. For the case of jet-fluidization,
however, the particle evolutions predicted by the two
approaches are completely different. The patterns observed
in Fig. 2a are absent when simulated using point-particles
(Fig. 2b). Also, for the particle-laden Poisuille flow,
point-particles do not predict any lift and fluidization. This
indicates that inter-phase momentum exchange modeled as
point-sources in two-way coupling of the point-particle
approach is not sufficient to produce the effects observed
in fully resolved direct numerical simulations of these
flows.

These findings suggest that LES/DNS of two-phase tur-
bulent flows should take into account the fluid volume dis-
placed by the particles. Even for dilute loadings, the
preferential concentration of heavy particles observed
in many turbulent flows will result in local clustering of
particles. Even small variations in fluid volume fractions
can alter the local pressure by producing a non-diver-
gence-free velocity field. These effects will become more
important in wall-bounded flows. As pointed by Segura
et al. (2004), the typical LES or DNS studies of particle-
laden channel flows involve grid resolutions that are finer
than the particle size in the wall-normal direction. Under
such conditions, the point-particle assumption is invalid.
In addition, the particles near the wall tend to move slowly
and have increased residence times. This may result in
increased variations in fluid volume fractions and the effect
of the finite-size of the particles near the channel walls can
comparable to the inter-particle and particle–wall collisions
(Prosperetti and Zhang, 1995). Our present study indicates
that the finite-size approach can capture the local flow
blocking effects and alters the fluid flow. These effects
may become important to predict accurate trends of parti-
cle–turbulence interactions.

Note that the finite-size formulation can be applied to
large-eddy simulations by applying a density-weighted
Favre-filtering operations to the governing equations simi-
lar to variable density, turbulent reacting flows. Further-
more, applications involving dense flows such as liquid-
fuel atomization in automotive and aircraft engines, should
account for the finite-size of the droplets/particles in order
to predict the evolution of the fuel mass fractions correctly.
As demonstrated in this work, Kelvin–Helmholtz type
instability waves created by denser fuel flowing into a
lighter fluid can be captured by this model. This may allow
better representation of the important features of primary
atomization, often neglected in these types of simulations
(Moin and Apte, 2006).
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